3.12 \(\int \sqrt {b \tan (c+d x)} \, dx\)

Optimal. Leaf size=192 \[ -\frac {\sqrt {b} \tan ^{-1}\left (1-\frac {\sqrt {2} \sqrt {b \tan (c+d x)}}{\sqrt {b}}\right )}{\sqrt {2} d}+\frac {\sqrt {b} \tan ^{-1}\left (\frac {\sqrt {2} \sqrt {b \tan (c+d x)}}{\sqrt {b}}+1\right )}{\sqrt {2} d}+\frac {\sqrt {b} \log \left (\sqrt {b} \tan (c+d x)-\sqrt {2} \sqrt {b \tan (c+d x)}+\sqrt {b}\right )}{2 \sqrt {2} d}-\frac {\sqrt {b} \log \left (\sqrt {b} \tan (c+d x)+\sqrt {2} \sqrt {b \tan (c+d x)}+\sqrt {b}\right )}{2 \sqrt {2} d} \]

[Out]

-1/2*arctan(1-2^(1/2)*(b*tan(d*x+c))^(1/2)/b^(1/2))*b^(1/2)/d*2^(1/2)+1/2*arctan(1+2^(1/2)*(b*tan(d*x+c))^(1/2
)/b^(1/2))*b^(1/2)/d*2^(1/2)+1/4*ln(b^(1/2)-2^(1/2)*(b*tan(d*x+c))^(1/2)+b^(1/2)*tan(d*x+c))*b^(1/2)/d*2^(1/2)
-1/4*ln(b^(1/2)+2^(1/2)*(b*tan(d*x+c))^(1/2)+b^(1/2)*tan(d*x+c))*b^(1/2)/d*2^(1/2)

________________________________________________________________________________________

Rubi [A]  time = 0.12, antiderivative size = 192, normalized size of antiderivative = 1.00, number of steps used = 11, number of rules used = 8, integrand size = 12, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.667, Rules used = {3476, 329, 297, 1162, 617, 204, 1165, 628} \[ -\frac {\sqrt {b} \tan ^{-1}\left (1-\frac {\sqrt {2} \sqrt {b \tan (c+d x)}}{\sqrt {b}}\right )}{\sqrt {2} d}+\frac {\sqrt {b} \tan ^{-1}\left (\frac {\sqrt {2} \sqrt {b \tan (c+d x)}}{\sqrt {b}}+1\right )}{\sqrt {2} d}+\frac {\sqrt {b} \log \left (\sqrt {b} \tan (c+d x)-\sqrt {2} \sqrt {b \tan (c+d x)}+\sqrt {b}\right )}{2 \sqrt {2} d}-\frac {\sqrt {b} \log \left (\sqrt {b} \tan (c+d x)+\sqrt {2} \sqrt {b \tan (c+d x)}+\sqrt {b}\right )}{2 \sqrt {2} d} \]

Antiderivative was successfully verified.

[In]

Int[Sqrt[b*Tan[c + d*x]],x]

[Out]

-((Sqrt[b]*ArcTan[1 - (Sqrt[2]*Sqrt[b*Tan[c + d*x]])/Sqrt[b]])/(Sqrt[2]*d)) + (Sqrt[b]*ArcTan[1 + (Sqrt[2]*Sqr
t[b*Tan[c + d*x]])/Sqrt[b]])/(Sqrt[2]*d) + (Sqrt[b]*Log[Sqrt[b] + Sqrt[b]*Tan[c + d*x] - Sqrt[2]*Sqrt[b*Tan[c
+ d*x]]])/(2*Sqrt[2]*d) - (Sqrt[b]*Log[Sqrt[b] + Sqrt[b]*Tan[c + d*x] + Sqrt[2]*Sqrt[b*Tan[c + d*x]]])/(2*Sqrt
[2]*d)

Rule 204

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> -Simp[ArcTan[(Rt[-b, 2]*x)/Rt[-a, 2]]/(Rt[-a, 2]*Rt[-b, 2]), x] /
; FreeQ[{a, b}, x] && PosQ[a/b] && (LtQ[a, 0] || LtQ[b, 0])

Rule 297

Int[(x_)^2/((a_) + (b_.)*(x_)^4), x_Symbol] :> With[{r = Numerator[Rt[a/b, 2]], s = Denominator[Rt[a/b, 2]]},
Dist[1/(2*s), Int[(r + s*x^2)/(a + b*x^4), x], x] - Dist[1/(2*s), Int[(r - s*x^2)/(a + b*x^4), x], x]] /; Free
Q[{a, b}, x] && (GtQ[a/b, 0] || (PosQ[a/b] && AtomQ[SplitProduct[SumBaseQ, a]] && AtomQ[SplitProduct[SumBaseQ,
 b]]))

Rule 329

Int[((c_.)*(x_))^(m_)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> With[{k = Denominator[m]}, Dist[k/c, Subst[I
nt[x^(k*(m + 1) - 1)*(a + (b*x^(k*n))/c^n)^p, x], x, (c*x)^(1/k)], x]] /; FreeQ[{a, b, c, p}, x] && IGtQ[n, 0]
 && FractionQ[m] && IntBinomialQ[a, b, c, n, m, p, x]

Rule 617

Int[((a_) + (b_.)*(x_) + (c_.)*(x_)^2)^(-1), x_Symbol] :> With[{q = 1 - 4*Simplify[(a*c)/b^2]}, Dist[-2/b, Sub
st[Int[1/(q - x^2), x], x, 1 + (2*c*x)/b], x] /; RationalQ[q] && (EqQ[q^2, 1] ||  !RationalQ[b^2 - 4*a*c])] /;
 FreeQ[{a, b, c}, x] && NeQ[b^2 - 4*a*c, 0]

Rule 628

Int[((d_) + (e_.)*(x_))/((a_.) + (b_.)*(x_) + (c_.)*(x_)^2), x_Symbol] :> Simp[(d*Log[RemoveContent[a + b*x +
c*x^2, x]])/b, x] /; FreeQ[{a, b, c, d, e}, x] && EqQ[2*c*d - b*e, 0]

Rule 1162

Int[((d_) + (e_.)*(x_)^2)/((a_) + (c_.)*(x_)^4), x_Symbol] :> With[{q = Rt[(2*d)/e, 2]}, Dist[e/(2*c), Int[1/S
imp[d/e + q*x + x^2, x], x], x] + Dist[e/(2*c), Int[1/Simp[d/e - q*x + x^2, x], x], x]] /; FreeQ[{a, c, d, e},
 x] && EqQ[c*d^2 - a*e^2, 0] && PosQ[d*e]

Rule 1165

Int[((d_) + (e_.)*(x_)^2)/((a_) + (c_.)*(x_)^4), x_Symbol] :> With[{q = Rt[(-2*d)/e, 2]}, Dist[e/(2*c*q), Int[
(q - 2*x)/Simp[d/e + q*x - x^2, x], x], x] + Dist[e/(2*c*q), Int[(q + 2*x)/Simp[d/e - q*x - x^2, x], x], x]] /
; FreeQ[{a, c, d, e}, x] && EqQ[c*d^2 - a*e^2, 0] && NegQ[d*e]

Rule 3476

Int[((b_.)*tan[(c_.) + (d_.)*(x_)])^(n_), x_Symbol] :> Dist[b/d, Subst[Int[x^n/(b^2 + x^2), x], x, b*Tan[c + d
*x]], x] /; FreeQ[{b, c, d, n}, x] &&  !IntegerQ[n]

Rubi steps

\begin {align*} \int \sqrt {b \tan (c+d x)} \, dx &=\frac {b \operatorname {Subst}\left (\int \frac {\sqrt {x}}{b^2+x^2} \, dx,x,b \tan (c+d x)\right )}{d}\\ &=\frac {(2 b) \operatorname {Subst}\left (\int \frac {x^2}{b^2+x^4} \, dx,x,\sqrt {b \tan (c+d x)}\right )}{d}\\ &=-\frac {b \operatorname {Subst}\left (\int \frac {b-x^2}{b^2+x^4} \, dx,x,\sqrt {b \tan (c+d x)}\right )}{d}+\frac {b \operatorname {Subst}\left (\int \frac {b+x^2}{b^2+x^4} \, dx,x,\sqrt {b \tan (c+d x)}\right )}{d}\\ &=\frac {\sqrt {b} \operatorname {Subst}\left (\int \frac {\sqrt {2} \sqrt {b}+2 x}{-b-\sqrt {2} \sqrt {b} x-x^2} \, dx,x,\sqrt {b \tan (c+d x)}\right )}{2 \sqrt {2} d}+\frac {\sqrt {b} \operatorname {Subst}\left (\int \frac {\sqrt {2} \sqrt {b}-2 x}{-b+\sqrt {2} \sqrt {b} x-x^2} \, dx,x,\sqrt {b \tan (c+d x)}\right )}{2 \sqrt {2} d}+\frac {b \operatorname {Subst}\left (\int \frac {1}{b-\sqrt {2} \sqrt {b} x+x^2} \, dx,x,\sqrt {b \tan (c+d x)}\right )}{2 d}+\frac {b \operatorname {Subst}\left (\int \frac {1}{b+\sqrt {2} \sqrt {b} x+x^2} \, dx,x,\sqrt {b \tan (c+d x)}\right )}{2 d}\\ &=\frac {\sqrt {b} \log \left (\sqrt {b}+\sqrt {b} \tan (c+d x)-\sqrt {2} \sqrt {b \tan (c+d x)}\right )}{2 \sqrt {2} d}-\frac {\sqrt {b} \log \left (\sqrt {b}+\sqrt {b} \tan (c+d x)+\sqrt {2} \sqrt {b \tan (c+d x)}\right )}{2 \sqrt {2} d}+\frac {\sqrt {b} \operatorname {Subst}\left (\int \frac {1}{-1-x^2} \, dx,x,1-\frac {\sqrt {2} \sqrt {b \tan (c+d x)}}{\sqrt {b}}\right )}{\sqrt {2} d}-\frac {\sqrt {b} \operatorname {Subst}\left (\int \frac {1}{-1-x^2} \, dx,x,1+\frac {\sqrt {2} \sqrt {b \tan (c+d x)}}{\sqrt {b}}\right )}{\sqrt {2} d}\\ &=-\frac {\sqrt {b} \tan ^{-1}\left (1-\frac {\sqrt {2} \sqrt {b \tan (c+d x)}}{\sqrt {b}}\right )}{\sqrt {2} d}+\frac {\sqrt {b} \tan ^{-1}\left (1+\frac {\sqrt {2} \sqrt {b \tan (c+d x)}}{\sqrt {b}}\right )}{\sqrt {2} d}+\frac {\sqrt {b} \log \left (\sqrt {b}+\sqrt {b} \tan (c+d x)-\sqrt {2} \sqrt {b \tan (c+d x)}\right )}{2 \sqrt {2} d}-\frac {\sqrt {b} \log \left (\sqrt {b}+\sqrt {b} \tan (c+d x)+\sqrt {2} \sqrt {b \tan (c+d x)}\right )}{2 \sqrt {2} d}\\ \end {align*}

________________________________________________________________________________________

Mathematica [C]  time = 0.04, size = 40, normalized size = 0.21 \[ \frac {2 (b \tan (c+d x))^{3/2} \, _2F_1\left (\frac {3}{4},1;\frac {7}{4};-\tan ^2(c+d x)\right )}{3 b d} \]

Antiderivative was successfully verified.

[In]

Integrate[Sqrt[b*Tan[c + d*x]],x]

[Out]

(2*Hypergeometric2F1[3/4, 1, 7/4, -Tan[c + d*x]^2]*(b*Tan[c + d*x])^(3/2))/(3*b*d)

________________________________________________________________________________________

fricas [B]  time = 0.68, size = 519, normalized size = 2.70 \[ -\sqrt {2} \left (\frac {b^{2}}{d^{4}}\right )^{\frac {1}{4}} \arctan \left (-\frac {\sqrt {2} b d \sqrt {\frac {b \sin \left (d x + c\right )}{\cos \left (d x + c\right )}} \left (\frac {b^{2}}{d^{4}}\right )^{\frac {1}{4}} - \sqrt {2} d \sqrt {\frac {\sqrt {2} b d^{3} \sqrt {\frac {b \sin \left (d x + c\right )}{\cos \left (d x + c\right )}} \left (\frac {b^{2}}{d^{4}}\right )^{\frac {3}{4}} \cos \left (d x + c\right ) + b^{2} d^{2} \sqrt {\frac {b^{2}}{d^{4}}} \cos \left (d x + c\right ) + b^{3} \sin \left (d x + c\right )}{\cos \left (d x + c\right )}} \left (\frac {b^{2}}{d^{4}}\right )^{\frac {1}{4}} + b^{2}}{b^{2}}\right ) - \sqrt {2} \left (\frac {b^{2}}{d^{4}}\right )^{\frac {1}{4}} \arctan \left (-\frac {\sqrt {2} b d \sqrt {\frac {b \sin \left (d x + c\right )}{\cos \left (d x + c\right )}} \left (\frac {b^{2}}{d^{4}}\right )^{\frac {1}{4}} - \sqrt {2} d \sqrt {-\frac {\sqrt {2} b d^{3} \sqrt {\frac {b \sin \left (d x + c\right )}{\cos \left (d x + c\right )}} \left (\frac {b^{2}}{d^{4}}\right )^{\frac {3}{4}} \cos \left (d x + c\right ) - b^{2} d^{2} \sqrt {\frac {b^{2}}{d^{4}}} \cos \left (d x + c\right ) - b^{3} \sin \left (d x + c\right )}{\cos \left (d x + c\right )}} \left (\frac {b^{2}}{d^{4}}\right )^{\frac {1}{4}} - b^{2}}{b^{2}}\right ) - \frac {1}{4} \, \sqrt {2} \left (\frac {b^{2}}{d^{4}}\right )^{\frac {1}{4}} \log \left (\frac {\sqrt {2} b d^{3} \sqrt {\frac {b \sin \left (d x + c\right )}{\cos \left (d x + c\right )}} \left (\frac {b^{2}}{d^{4}}\right )^{\frac {3}{4}} \cos \left (d x + c\right ) + b^{2} d^{2} \sqrt {\frac {b^{2}}{d^{4}}} \cos \left (d x + c\right ) + b^{3} \sin \left (d x + c\right )}{\cos \left (d x + c\right )}\right ) + \frac {1}{4} \, \sqrt {2} \left (\frac {b^{2}}{d^{4}}\right )^{\frac {1}{4}} \log \left (-\frac {\sqrt {2} b d^{3} \sqrt {\frac {b \sin \left (d x + c\right )}{\cos \left (d x + c\right )}} \left (\frac {b^{2}}{d^{4}}\right )^{\frac {3}{4}} \cos \left (d x + c\right ) - b^{2} d^{2} \sqrt {\frac {b^{2}}{d^{4}}} \cos \left (d x + c\right ) - b^{3} \sin \left (d x + c\right )}{\cos \left (d x + c\right )}\right ) \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((b*tan(d*x+c))^(1/2),x, algorithm="fricas")

[Out]

-sqrt(2)*(b^2/d^4)^(1/4)*arctan(-(sqrt(2)*b*d*sqrt(b*sin(d*x + c)/cos(d*x + c))*(b^2/d^4)^(1/4) - sqrt(2)*d*sq
rt((sqrt(2)*b*d^3*sqrt(b*sin(d*x + c)/cos(d*x + c))*(b^2/d^4)^(3/4)*cos(d*x + c) + b^2*d^2*sqrt(b^2/d^4)*cos(d
*x + c) + b^3*sin(d*x + c))/cos(d*x + c))*(b^2/d^4)^(1/4) + b^2)/b^2) - sqrt(2)*(b^2/d^4)^(1/4)*arctan(-(sqrt(
2)*b*d*sqrt(b*sin(d*x + c)/cos(d*x + c))*(b^2/d^4)^(1/4) - sqrt(2)*d*sqrt(-(sqrt(2)*b*d^3*sqrt(b*sin(d*x + c)/
cos(d*x + c))*(b^2/d^4)^(3/4)*cos(d*x + c) - b^2*d^2*sqrt(b^2/d^4)*cos(d*x + c) - b^3*sin(d*x + c))/cos(d*x +
c))*(b^2/d^4)^(1/4) - b^2)/b^2) - 1/4*sqrt(2)*(b^2/d^4)^(1/4)*log((sqrt(2)*b*d^3*sqrt(b*sin(d*x + c)/cos(d*x +
 c))*(b^2/d^4)^(3/4)*cos(d*x + c) + b^2*d^2*sqrt(b^2/d^4)*cos(d*x + c) + b^3*sin(d*x + c))/cos(d*x + c)) + 1/4
*sqrt(2)*(b^2/d^4)^(1/4)*log(-(sqrt(2)*b*d^3*sqrt(b*sin(d*x + c)/cos(d*x + c))*(b^2/d^4)^(3/4)*cos(d*x + c) -
b^2*d^2*sqrt(b^2/d^4)*cos(d*x + c) - b^3*sin(d*x + c))/cos(d*x + c))

________________________________________________________________________________________

giac [A]  time = 0.52, size = 176, normalized size = 0.92 \[ \frac {\frac {2 \, \sqrt {2} {\left | b \right |}^{\frac {3}{2}} \arctan \left (\frac {\sqrt {2} {\left (\sqrt {2} \sqrt {{\left | b \right |}} + 2 \, \sqrt {b \tan \left (d x + c\right )}\right )}}{2 \, \sqrt {{\left | b \right |}}}\right )}{d} + \frac {2 \, \sqrt {2} {\left | b \right |}^{\frac {3}{2}} \arctan \left (-\frac {\sqrt {2} {\left (\sqrt {2} \sqrt {{\left | b \right |}} - 2 \, \sqrt {b \tan \left (d x + c\right )}\right )}}{2 \, \sqrt {{\left | b \right |}}}\right )}{d} - \frac {\sqrt {2} {\left | b \right |}^{\frac {3}{2}} \log \left (b \tan \left (d x + c\right ) + \sqrt {2} \sqrt {b \tan \left (d x + c\right )} \sqrt {{\left | b \right |}} + {\left | b \right |}\right )}{d} + \frac {\sqrt {2} {\left | b \right |}^{\frac {3}{2}} \log \left (b \tan \left (d x + c\right ) - \sqrt {2} \sqrt {b \tan \left (d x + c\right )} \sqrt {{\left | b \right |}} + {\left | b \right |}\right )}{d}}{4 \, b} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((b*tan(d*x+c))^(1/2),x, algorithm="giac")

[Out]

1/4*(2*sqrt(2)*abs(b)^(3/2)*arctan(1/2*sqrt(2)*(sqrt(2)*sqrt(abs(b)) + 2*sqrt(b*tan(d*x + c)))/sqrt(abs(b)))/d
 + 2*sqrt(2)*abs(b)^(3/2)*arctan(-1/2*sqrt(2)*(sqrt(2)*sqrt(abs(b)) - 2*sqrt(b*tan(d*x + c)))/sqrt(abs(b)))/d
- sqrt(2)*abs(b)^(3/2)*log(b*tan(d*x + c) + sqrt(2)*sqrt(b*tan(d*x + c))*sqrt(abs(b)) + abs(b))/d + sqrt(2)*ab
s(b)^(3/2)*log(b*tan(d*x + c) - sqrt(2)*sqrt(b*tan(d*x + c))*sqrt(abs(b)) + abs(b))/d)/b

________________________________________________________________________________________

maple [A]  time = 0.07, size = 160, normalized size = 0.83 \[ \frac {b \sqrt {2}\, \ln \left (\frac {b \tan \left (d x +c \right )-\left (b^{2}\right )^{\frac {1}{4}} \sqrt {b \tan \left (d x +c \right )}\, \sqrt {2}+\sqrt {b^{2}}}{b \tan \left (d x +c \right )+\left (b^{2}\right )^{\frac {1}{4}} \sqrt {b \tan \left (d x +c \right )}\, \sqrt {2}+\sqrt {b^{2}}}\right )}{4 d \left (b^{2}\right )^{\frac {1}{4}}}+\frac {b \sqrt {2}\, \arctan \left (\frac {\sqrt {2}\, \sqrt {b \tan \left (d x +c \right )}}{\left (b^{2}\right )^{\frac {1}{4}}}+1\right )}{2 d \left (b^{2}\right )^{\frac {1}{4}}}-\frac {b \sqrt {2}\, \arctan \left (-\frac {\sqrt {2}\, \sqrt {b \tan \left (d x +c \right )}}{\left (b^{2}\right )^{\frac {1}{4}}}+1\right )}{2 d \left (b^{2}\right )^{\frac {1}{4}}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((b*tan(d*x+c))^(1/2),x)

[Out]

1/4/d*b/(b^2)^(1/4)*2^(1/2)*ln((b*tan(d*x+c)-(b^2)^(1/4)*(b*tan(d*x+c))^(1/2)*2^(1/2)+(b^2)^(1/2))/(b*tan(d*x+
c)+(b^2)^(1/4)*(b*tan(d*x+c))^(1/2)*2^(1/2)+(b^2)^(1/2)))+1/2/d*b/(b^2)^(1/4)*2^(1/2)*arctan(2^(1/2)/(b^2)^(1/
4)*(b*tan(d*x+c))^(1/2)+1)-1/2/d*b/(b^2)^(1/4)*2^(1/2)*arctan(-2^(1/2)/(b^2)^(1/4)*(b*tan(d*x+c))^(1/2)+1)

________________________________________________________________________________________

maxima [A]  time = 0.43, size = 153, normalized size = 0.80 \[ \frac {b {\left (\frac {2 \, \sqrt {2} \arctan \left (\frac {\sqrt {2} {\left (\sqrt {2} \sqrt {b} + 2 \, \sqrt {b \tan \left (d x + c\right )}\right )}}{2 \, \sqrt {b}}\right )}{\sqrt {b}} + \frac {2 \, \sqrt {2} \arctan \left (-\frac {\sqrt {2} {\left (\sqrt {2} \sqrt {b} - 2 \, \sqrt {b \tan \left (d x + c\right )}\right )}}{2 \, \sqrt {b}}\right )}{\sqrt {b}} - \frac {\sqrt {2} \log \left (b \tan \left (d x + c\right ) + \sqrt {2} \sqrt {b \tan \left (d x + c\right )} \sqrt {b} + b\right )}{\sqrt {b}} + \frac {\sqrt {2} \log \left (b \tan \left (d x + c\right ) - \sqrt {2} \sqrt {b \tan \left (d x + c\right )} \sqrt {b} + b\right )}{\sqrt {b}}\right )}}{4 \, d} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((b*tan(d*x+c))^(1/2),x, algorithm="maxima")

[Out]

1/4*b*(2*sqrt(2)*arctan(1/2*sqrt(2)*(sqrt(2)*sqrt(b) + 2*sqrt(b*tan(d*x + c)))/sqrt(b))/sqrt(b) + 2*sqrt(2)*ar
ctan(-1/2*sqrt(2)*(sqrt(2)*sqrt(b) - 2*sqrt(b*tan(d*x + c)))/sqrt(b))/sqrt(b) - sqrt(2)*log(b*tan(d*x + c) + s
qrt(2)*sqrt(b*tan(d*x + c))*sqrt(b) + b)/sqrt(b) + sqrt(2)*log(b*tan(d*x + c) - sqrt(2)*sqrt(b*tan(d*x + c))*s
qrt(b) + b)/sqrt(b))/d

________________________________________________________________________________________

mupad [B]  time = 2.62, size = 49, normalized size = 0.26 \[ \frac {{\left (-1\right )}^{1/4}\,\sqrt {b}\,\left (\mathrm {atan}\left (\frac {{\left (-1\right )}^{1/4}\,\sqrt {b\,\mathrm {tan}\left (c+d\,x\right )}}{\sqrt {b}}\right )-\mathrm {atanh}\left (\frac {{\left (-1\right )}^{1/4}\,\sqrt {b\,\mathrm {tan}\left (c+d\,x\right )}}{\sqrt {b}}\right )\right )}{d} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((b*tan(c + d*x))^(1/2),x)

[Out]

((-1)^(1/4)*b^(1/2)*(atan(((-1)^(1/4)*(b*tan(c + d*x))^(1/2))/b^(1/2)) - atanh(((-1)^(1/4)*(b*tan(c + d*x))^(1
/2))/b^(1/2))))/d

________________________________________________________________________________________

sympy [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \sqrt {b \tan {\left (c + d x \right )}}\, dx \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((b*tan(d*x+c))**(1/2),x)

[Out]

Integral(sqrt(b*tan(c + d*x)), x)

________________________________________________________________________________________